1.1 Cartesian Form

Problems Worksheet

- 1. Consider the complex numbers $z = 1 \sqrt{3}i$ and w = -3 + 2i. Determine:
 - a. Re(z) + Im(w).
 - b. 2w z.

C. *ZW*.

d. $\frac{3w}{z}$, in the form a + bi.

2. Show that for the general complex numbers w = a + bi and z = x + yi, then $\frac{w}{z} = \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i$.

3. The solutions of the quadratic equation $z^2 + mz + n = 0$ are $z = -4 \pm 2i$. Find *m* and *n*.

4. Find the values of the real numbers c and d if $\frac{c}{4+i} + \frac{di}{-2-i} = \frac{3}{2+2i}$.

5. If $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, determine z^2 , z^3 , and z^4 and plot these four points on the Argand Plane provided.

- 6. Given the complex numbers w = 3 + mi and z = 2 + i, determine the value(s) of m such that:
 - a. $Im(wz) = Re(w^2)$

b.
$$\frac{10z}{w} = 7 + i$$

7. Let z_1 and z_2 be the solutions to $z^2 - 4z + 20 = 0$, and let w = -8. Show clearly that the triangle formed by the points w, z_1 and z_2 on the Argand Plane is isosceles. A simple sketch may be helpful but is not required.

8. The points w_1 , w_2 and w_3 are given by -4 + 2i, $-1 + (3\sqrt{3} + 2)i$ and 2 + 2i respectively. Show that this triangle is equilateral.